
ERDC MSRC/PET TR/00-03

Locating Floating-Point Exceptions on the SGI Origin2000

by

Mark R. Fahey

100399

 Work funded by the DoD High Performance Computing
 Modernization Program CEWES
 Major Shared Resource Center through

 Programming Environment andTraining (PET)

 Supported by Contract Number: DAHC94-96-C0002
 Nichols Research Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of Defense Position, policy, or decision
unless so designated by other official documentation.

Locating Floating-Point Exceptions

on the SGI Origin2000

Mark R. Fahey�

Engineer Research and Development Center

Major Shared Resource Center

Vicksburg, MS 39180

October 14, 1999

1 Introduction

Every IEEE arithmetic operation produces a result whether it is mathematically correct

or not. When an exceptional condition like division by zero or overow occurs in IEEE

arithmetic, the default response is to deliver a result and continue processing.

An exception is not an error unless handled poorly. To quote Kahan [8]:

Exceptions that reveal errors are merely messengers. What turns an exception

into an error is bad exception-handling.

What makes exceptional operations exceptional is that no single default response can be

satisfactory in every instance. On the other hand, if a default response will serve most

instances satisfactorily, the unsatisfactory instances cannot justify aborting computation

every time the exception occurs. The IEEE arithmetic system is designed to continue to

function on a computation as long as possible, handling unusual situations with reasonable

default responses, including setting appropriate ags.

For many programmers, a oating-point exception is a sign of a \buggy" program. These

\bugs" can range from use of uninitialized variables to incorrectly coded algorithms. These

same programmers often want to determine exactly where unexpected exceptions occur and

\�x" the code to avoid these occurrences. The purpose of this paper is to demonstrate how to

detect and locate arithmetic exceptions on the SGI Origin2000 (O2K). The O2K has several

features to handle oating-point exceptions, and each of them will be discussed. This report

additionally serves as an introduction to exception-handling techniques.

In Section 2, the IEEE Standard for Binary Floating-Point Arithmetic is reviewed as well

as the oating-point representation on the O2K. In Section 3, oating-point exceptions are

discussed and methods for detecting them are presented. In Section 4, several methods for

locating exceptions with various programming tools are demonstrated.

�Computational Migration Group, Nichols Research Corporation, mfahey@nrcmail.wes.hpc.mil

1

Type Size Sign Exponent Mantissa

Single 32 bits 1 bit 8 bits 23 bits

Double 64 bits 1 bit 11 bits 52 bits

Table 1: IEEE Single and Double precision.

2 IEEE Floating-Point Review

The IEEE Standard for binary arithmetic [7] de�nes the most commonly used oating-

point system. The standard speci�es oating-point number formats, the results of the basic

oating-point operations and comparisons, rounding modes, oating-point exceptions and

their handling, and conversion between di�erent arithmetics.

Details of the two main oating-point precisions are shown in Table 1. Binary oating-

point numbers are normalized, i.e., the exponent and mantissa are adjusted such that all bits

in the binary representation of the value occur to the right of the radix point and the leading

bit is a \1". Since every oating-point number is stored in this way,1 the leading \1" does

not need to be explicitly stored, e�ectively giving the mantissa one extra bit of precision for

no cost.

In single precision, the maximum relative representation error is 2�24 with a range of

�2�126 to �(2�2�23)�2127. While in double precision, the maximum relative representation

error is 2�54 and the e�ective range is �2�1022 to �(2� 2�52)� 21023.

The standard speci�es that all arithmetic operations are to be performed as if they

were calculated to in�nite precision and then rounded according to one of four modes. The

default rounding mode is to round towards the nearest representable number. In the case of

a tie where the result is exactly half way between two adjacent oating-point numbers, the

least signi�cant bit is chosen to be zero (rounding to even). The other modes are rounding

towards plus or minus in�nity (facilitates interval arithmetic) and rounding towards zero

(truncation).

It is possible for the result of an operation to be so large or so small that is falls outside

the available oating-point range. This is called range violation. When the magnitude is too

large, the result is said to overow the available range; when it is too small, an underow

occurs. It is also possible that invalid operations may be attempted. The IEEE Standard

handles these special situations by including quantities such as NaN (Not a Number) and

in�nity. Without special quantities like these, there is no good way to handle exceptional

situations like division by zero2 other than to abort computation.

The IEEE Standard provides a ag for each kind of oating-point exception. This ag

is raised each time its exception is signaled and stays raised until the program resets it.

Programs may also test, save, and restore the exception ags.

1The IEEE Standard also uses denormal or subnormal numbers to permit gradual under-

ow instead of ushing all underows to zero.
2It is desirable to continue execution after a divide by zero when calculating trigonometric

functions. For example, computing exp(exp(�1:0= cos(�))) when � is a multiple of �=2

bene�ts from continuing execution. This arises when computing Chapman functions in the

theory of planetary atmospheres [10].

2

subroutine sumupdn(n, x, xup, xdn)

use ftn_ieee_definitions

real x(n), xup, xdn

integer save_rounding_mode

! Save the current rounding mode then change the rounding mode

! to round to positive infinity.

call get_ieee_rounding_mode(save_rounding_mode)

call set_ieee_rounding_mode(ieee_rm_pos_infinity)

! Calculate the upper bound on sum.

xup = sum(x)

! Reset to round to negative infinity mode.

call set_ieee_rounding_mode(ieee_rm_neg_infinity)

! Calculate lower bound on sum.

xdn = sum(x)

! Restore original rounding mode and return to the caller.

call set_ieee_rounding_mode(save_rounding_mode)

return

end subroutine sumupdn

Figure 1: Subroutine that calculates upper and lower bounds on a sum of numbers.

2.1 SGI Origin2000 Floating-Point Representation

On the O2K, single and double precision oating-point numbers are represented as speci�ed

by the IEEE standard. Thus, the single precision oating-point format allows representation

to about seven signi�cant decimal digits and double precision to about 15.

The O2K also supports long double precision, what SGI calls quad precision. This

representation is not IEEE compliant. The quad precision has a 107 bit mantissa with an

11 bit exponent and one sign bit. In terms of decimal precision, this is approximately 34

decimal digits with a range of 10�292 to 10308. (See [4] or the math man page on the O2K

for more information.)

The rounding modes can be obtained and set via intrinsic functions. The function

get ieee rounding mode() returns the current oating-point rounding mode, and the func-

tion set ieee rounding mode() alters the current oating-point rounding mode state and

can be used to restore the oating-point rounding mode before exiting a procedure.

The example routine in Figure 1 calculates upper and lower bounds on a sum of num-

bers. This subroutine uses intrinsic subroutines to store, alter, and restore the oating-point

rounding mode. The current rounding mode is �rst stored in save rounding mode, and then

the rounding mode is set to round towards in�nity. This will round up all operations, thus

producing an upper bound on the sum of the numbers in the array x. The rounding mode is

then similarly altered to round towards negative in�nity, thus giving a lower bound on the

sum. The rounding mode is reset using the value stored in save rounding mode.

3

Exception Type Examples Default Value

Inexact 2:0=3:0, log(1:1) Rounded Result

Underow exp(�92:0) Subnormal numbers or zero

Overow exp(92:0) �huge(1.0), �1

Divide by zero x=0 for x 6= 0;�1, NaN �1

Invalid Operation 0=0, 0�1 NaN (Not a Number)

Table 2: IEEE oating-point exceptions.

3 Detecting Exceptions on the SGI Origin2000

When an exception occurs, the system responds in one of two ways:

� If the exception's trap (or interrupt) is disabled (default), the system records that an

exception occurred and continues execution using the default speci�ed by the IEEE

Standard for the excepting operation, or

� If the exception's trap is enabled, the system generates a SIGFPE signal. The trap

handler handle sigfpes() and the environment variable TRAP FPE are provided in

the library libfpe to unmask and handle these conditions.

The IEEE Standard de�nes �ve basic types of oating-point exceptions:

� inexact - exact value cannot be represented in chosen precision

� underow - result falls below range of precision

� overow - result falls above range of precision

� divide by zero - result is �in�nity

� invalid operation - result is not a valid number

The last three exceptions usually should not be ignored when they occur. The �rst two

exceptions, inexact and underow, commonly occur and can often be ignored. Note that

most oating-point operations incur the inexact exception. Table 2 lists these �ve exceptions

and their default result. The default values depend on the rounding mode. For instance,

assume the rounding mode is round to zero or round to negative in�nity. With the intrinsic

function huge,3 the sum

huge(1:0) + huge(1:0)

will result in huge(1:0); while if the rounding mode is round to nearest or round to in�nity,

then the result is in�nity.

By default, exceptional operations are masked. That is, the default value in Table 2 is

returned as the result of the operation and the program continues silently. However, this

event may be intercepted by causing an exception to be raised; i.e., an interrupt. When this

occurs, the operating system generates a SIGFPE signal.

As required by the IEEE standard, the oating-point environment on the O2K provides

users with a way to read and write the status ags. The ags are \sticky" in that once set,

3Fortran 90 intrinsic function that returns the largest number in the real numeric model.

4

Exception bit

Invalid Operation 16

Divide by zero 15

Overow 14

Underow 13

Inexact 12

Interrupt bit

Invalid Operation 11

Divide by zero 10

Overow 9

Underow 8

Inexact 7

Table 3: Exceptions and Interrupts with their corresponding bit position.

integer status

logical invalid, division, over, under, inexact

call get_ieee_exceptions(status)

! or call get_ieee_status(status) to get exceptions and interrupts

invalid = btest(status,16)

division = btest(status,15)

over = btest(status,14)

under = btest(status,13)

inexact = btest(status,12)

print*,invalid,division,over,under,inexact

Figure 2: Decoding the IEEE exception status ag.

they remain set until cleared. Note that the ags provide a way to di�erentiate an overow

from a genuine in�nity.

The status ags can be tested to detect which exceptions have occurred and can also be

explicitly set and cleared. The get ieee exceptions() function provides one way to access

these ags while set ieee exceptions() may be used to set the exceptions ags. Note that

get ieee status() and set ieee status() may also be used to get and set the exceptions.

The routine get ieee exceptions() returns an integer value that combines all of the

exception ags that have been raised. This value is the bitwise \OR" of the accrued exception

ags where each ag is represented by a single bit. The bit position for each exception is

shown in Table 3. Table 3 also shows the bit positions for the corresponding interrupts.

Interrupts can be used to terminate execution of a program when oating-point exceptions

occur (see Section 4).

The example in Figure 2 decodes the integer returned by get ieee exceptions(). It

uses the Fortran 90 intrinsic function btest() which tests a speci�ed bit of an integer value.

A value of .TRUE. is returned if the bit is \1", .FALSE. if the bit is \0". This code fragment

will print out a true or false value for each exception ag.

Alternatively, the function test ieee exception() can be used to decode the value

of status. This function is one of the intrinsic subroutines that support IEEE oating-

point arithmetic on the O2K. It also returns a logical result. The following code fragment

demonstrates use of this function.

5

if(test_ieee_exception(ieee_xptn_inexact_result)) &

print*,'Inexact result'

The argument of test ieee exception() can be one of the �ve named constants

� ieee xptn inexact result,

� ieee xptn underflow,

� ieee xptn overflow,

� ieee xptn div by zero,

� ieee xptn invalid opr

provided in the ftn ieee definitions module.

4 Locating Exceptions on the SGI Origin2000

When an exception is detected, most programmers want to know where the exception oc-

curred. One way to accomplish this is to test the exception ags at various points in a

program using the functions presented in the previous sections to isolate the exception pre-

cisely. This method is tedious with much overhead.

It is much simpler to determine where an exception occurs by enabling its interrupt.

When an exception whose interrupt is enabled occurs, the program is sent a SIGFPE signal

by the IRIX operating system. With the interrupt enabled, one can determine where the

exception occurs by running under a debugger and stopping execution upon receipt of the

SIGFPE signal or by using a SIGFPE handler that prints information about the instruction

where the exception occurred.

The following subsections show how to use dbx, TotalView, and a oating-point exception

handling library on the O2K to locate oating-point exceptions.

4.1 Using dbx

In order to use dbx (source-level debugger) to locate the instruction where a oating-point

exception occurred, �rst insert the line

call set ieee interrupts(ieee ntpt type)

where type is one of invalid opr, div by zero, overflow, underflow, or inexact result,

near the beginning of the code (must be before the exception.) Then, as usual when using

dbx, compile the code with the -g option. Finally, start up dbx (i.e., dbx a.out) and type

run. The output will show the line where the exception occurred.

The program in Figure 3 can be used to illustrate this procedure. Compile this program

with f90 -g ex1.f. This program runs to completion with the output

> a.out

-6., NaN

6

program ex1

double precision x, y, sqrtm4

x = -6.0d0

y = sqrtm4(x)

print * , x, y

end

double precision function sqrtm4(x)

double precision x

sqrtm4 = sqrt(x) - 4.0d0

return

end

Figure 3: Sample program with invalid exception.

Somewhere, an invalid operation exception occurred. Now, insert the line

use ftn ieee definitions

to include named constants for use with the exception and interrupt intrinsic functions and

insert the subroutine call

call set ieee interrupts(ieee ntpt invalid opr)

after the declarations, but before the assignment to y. Figure 4 shows the modi�ed version

of program ex1. Recompile the new version as before. Running this program now produces

the output:

> a.out

Floating Exception

Abort (core dumped)

To �nd the cause of the invalid operation, we use dbx to locate where the SIGFPE signal

originates. The dbx session looks like the following.

> dbx a.out

dbx version 7.2.1.3m Dec 23 1998 01:09:37

Core from signal SIGABRT: Abort (see abort(3c))

(dbx) run

Process 834693 (a.out) started

Process 834693 (a.out) stopped on signal SIGFPE: Floating point exception (h

andler sigfdie) at [sqrtm4:12 +0x8,0x1000135c]

12 sqrtm4 = sqrt(x) - 4.0d0

(dbx) print x

-6.0

(dbx)

7

program ex1

use ftn_ieee_definitions

double precision x, y, sqrtm4

call set_ieee_interrupts(ieee_ntpt_invalid_opr)

x = -6.0d0

y = sqrtm4(x)

print * , x, y

end

double precision function sqrtm4(x)

double precision x

sqrtm4 = sqrt(x)

return

end

Figure 4: Sample program with invalid operation interrupt enabled.

This shows that the exception occurred in the routine sqrtm4 as a result of attempting to

compute the square root of �6:0.

4.2 Using TotalView

TotalView, an interactive source-level debugger with a graphical interface (but no command-

line interface), can be used like dbx. Compile the code as above, but instead of running dbx

a.out, use totalview a.out. Execute the program from within TotalView. TotalView will

stop at the exception showing the line and value of the o�ending variable. The user can

set breakpoints in the code if the cause of the exception must be traced. As with dbx, this

requires enabling interrupts to ensure that execution halts at the exception; otherwise the

program will run to completion.

4.3 Using a Signal Handler to Locate an Exception

The previous subsections demonstrated that if you enable trapping without a SIGFPE handler,

the program aborts on the next occurrence of the trapped exception. Alternatively, if a

SIGFPE handler is installed, the next occurrence of the trapped exception will cause the

system to transfer control to a handler routine, which can print diagnostic information and

either abort or resume execution.

On the O2K, you can write your own trap handler or use the trap handler in the oating-

point exception library libfpe. The library libfpe provides two methods to unmask and

handle these conditions: the subroutine handle sigfpes() and the environment variable

TRAP FPE. Both methods provide mechanisms for unmasking each condition (except inexact),

for handling and classifying exceptions, and for returning either a default value or a chosen

value for the o�ending operation. Mechanisms to count, trace, exit, or abort on enabled

exceptions are also provided.

8

Figure 5 shows how to call handle sigfpes(). Compile the code with f90 ex2.F -lfpe

and execute it. The following output is produced.

-6., NaN, Infinity

******* TRAP STATS FOR PID 840366 *********

DIVZERO 1

INVALID 1

bad sig count = 0

bad code count = 0

******* END TRAP STATS FOR PID 840366 *****

For sake of brevity, trace information (dbx stack trace) for each exception has been left out.

The trace shows where the exceptions occurred. Also note that using handle sigfpes()

supersedes any interrupt calls located in the code. The environment variable TRAP FPE should

be unde�ned if a call to handle sigfpes() is used.

4.4 Using the TRAP FPE environment variable

If the code has been linked with the libfpe library, as above, then the runtime startup

routine will check for the environment variable TRAP FPE. The string read as the value of

TRAP FPE will be interpreted and handle sigfpes() will be called with the resulting val-

ues. Now, setting TRAP FPE will not supersede hard-coded settings. So, for the example

above, if the environment variable is set, the settings in my sigfpes() will supersede those

in the environment variable. However, the traps enabled in the previous example can be

accomplished much easier with the environment variable.

For example, remove the call to my sigfpes() in the previous program (Figure 5). Set

the TRAP FPE environment variable with the following options; for C shell or T shell,

setenv TRAP_FPE "UNDERFL=ZERO; DIVZERO=COUNT(100),TRACE(5),ABORT(5);

INVALID=COUNT,TRACE(5),ABORT(5)"

or, for Korn shell,

export TRAP_FPE="UNDERFL=ZERO; DIVZERO=COUNT(100),TRACE(5),ABORT(5);

INVALID=COUNT,TRACE(5),ABORT(5)"

Upon execution, the same exceptions are traced and counted as in Section 4.3. Setting the

TRAP FPE environment variable supersedes the use of calls to set ieee interrupts().

4.5 Using SpeedShop

Another alternative is to use SGI's SpeedShop Toolbox. This multipurpose tool can be

used to locate where oating-point exceptions occur. If the program is linked to the libfpe

library, then the exception-handling facilities of the SpeedShop tools can be invoked either

through a command line or window interface.

9

program ex2

use ftn_ieee_definitions

#include <f90sigfpe.h>

double precision x, y, z, sqrtm4

call my_sigfpes()

x = -6.0d0

y = sqrtm4(x)

z = 1.0/(x+6.0)

print * , x, y, z

end

double precision function sqrtm4(x)

double precision x

sqrtm4 = sqrt(x)

return

end

subroutine my_sigfpes()

use ftn_ieee_definitions

#include <f90sigfpe.h>

! sets all underflows to zero

fsigfpe(FPE_UNDERFL)%repls = FPE_ZERO

! stack trace of first 5 exceptions of division by zero or invalid

fsigfpe(FPE_DIVZERO)%trace=5

fsigfpe(FPE_INVALID)%trace=5

! counts each trap, printed every 100th trap

fsigfpe(FPE_DIVZERO)%count=100

fsigfpe(FPE_INVALID)%count=100

! core dump and abort on second divide by zero or invalid

fsigfpe(FPE_DIVZERO)%abort=5

fsigfpe(FPE_INVALID)%abort=5

call handle_sigfpes(FPE_ON, FPE_EN_UNDERFL + &

FPE_EN_DIVZERO + FPE_EN_INVALID, &

0, FPE_ABORT_ON_ERROR, 0)

return

end

Figure 5: Sample code that calls the exception handler.

10

After compilation of the program, run SpeedShop on the executable with the the com-

mand ssrun -fpe a.out. A summary of all oating-point exceptions speci�ed by the

TRAP ENV variable will be part of the output generated.

The command cvd a.out starts the window interface of SpeedShop. Once the workshop

debugger window appears, choose \select task: �nd oating point exceptions" in the perf

option and run the program. The locations where any oating point exceptions occurred

will be identi�ed.

5 Concluding Remarks

Floating-point exceptions can easily be trapped to show where the exception occurs on the

SGI Origin2000. This can be done using dbx, TotalView, or through exception handlers.

Calling the subroutine handle sigfpes() is a preferred method when preparing software

for others to use on the O2K, since it relieves the user of any need to know about the TRAP FPE

environment variable. The environment variable is preferable if one wants to experiment or

allow any user to experiment with di�erent trap behaviors with minimum e�ort or allow the

user to have portable code.

A thorough reference on oating-point arithmetic is What Every Computer Scientist

Should Know About Floating-Point Arithmetic by Goldberg [5]. Sun Microsystems' Nu-

merical Computation Guide [9] is a valuable reference on IEEE arithmetic and exception

handling. The Fortran Language Reference Manual, Volume 2 [3] contains a detailed list of

named constants and intrinsic exception functions that support IEEE oating-point arith-

metic on the O2K. For related discussions on how to obtain faster numerical algorithms via

exception handling, see [1, 6].

References

[1] Demmel, J.W. and Li, X., Faster Numerical Algorithms via Exception Handling, IEEE

Trans. Comput., vol. 43, 1994, pp. 983-992. LAPACK Working Note #59.

[2] Fortran Language Reference Manual, Volume 1. Silicon Graphics, Document Number

007-3692-002 (http://techpubs.sgi.com/library).

[3] Fortran Language Reference Manual, Volume 2. Silicon Graphics, Document Number

007-3693-002 (http://techpubs.sgi.com/library).

[4] Fortran Language Reference Manual, Volume 3. Silicon Graphics, Document Number

007-3694-002 (http://techpubs.sgi.com/library).

[5] Goldberg, D., What Every Computer Scientist Should Know About Floating-Point

Arithmetic, ACM Comput. Surveys, vol. 23, 1991, pp. 5-48.

[6] Hull, T.E., Fairgrieve, T.F., and Tang, P.T.P., Implementing Complex-Elementary

Functions Using Exception Handling, ACM Trans. Math. Soft., vol. 20, 1994, pp. 215-

244.

11

[7] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

Institute of Electrical and Electronics Engineers, New York, 1985. Reprinted in SIG-

PLAN Notices, 22(2):9-25, 1987.

[8] Kahan, W., Lecture Notes on the Status of IEEE 754, May 31, 1996.

[9] Numerical Computation Guide, Sun Microsystems, http://www.sns.ias.edu/Main/

computing/compilers html/common-tools/numerical comp guide/index.html.

[10] Schulze, D., Division by zero is OK in many cases, NA Digest, October 12, 1993, vol.

93: issue 38. http://www.netlib.org/na-digest-html/93/v93n38.html

12

